In this post, I’ll outline some of the best parts about product managing data science. Data science is the creation of product from data, requiring a blend of the skills of technology, statistics, and business. Product Management brings and keeps product in the world, requiring a blend of the skills of technology, user experience, and business. All of the challenges of product management appear in data science. And then some. The Knowledge Funnel The Knowledge Funnel is a concept introduced by Roger Martin in Design of Business: Why Design Thinking is the Next Competitive Advantage (2009). At the top of the funnel, you got mysteries. It would seem that there are an uncountable number of mysteries. In the middle, you have heuristics,[…]

Some work is┬ávery clearly product work. It’s work on things where the success and failure is dependent on the users of the thing. Your users pay you. Their satisfaction matters above all else. Optimizing for the satisfaction of end users is a distinct activity. Hypotheses have to be assessed and then tested – because it’s very likely that you’re going to be wrong. There’s technology that has to be set up such that it’s reliable and robust for the intermediate to long run. It’s designed to be effective and persistent, with all of the instrumentation that goes along with that. That might include manual A/B testing, user-focused analytics, and extra special attention on the optimization objective. Clear product work is[…]