The inspiration for this post is John Cutler‘s excellent twitter thread on prioritization. It’s well worth the read. This post builds on that inspiration using Roger Martin’s concept of the The Knowledge Funnel. One big takeaway of John Cutler’s thread is when deciding the sequence of what to do in product management, consider the big picture and think of the impact of what you will do next on what you will know next. What I like about Roger Martin’s concept on knowledge funnels: consider the big picture and think of what you know about value. Product management and data science is all about managing the knowledge funnel. Your ability to manage this funnel is predictive your ability, and those you[…]

There are many calls to break up tech. Break up what, exactly? Regulate tech? Regulate what? There’s a lot of polarization about what to do about Facebook, Amazon, Apple, and Google. That polarization is in part driven by anger. Dig a bit deeper and see fear. Maybe you’re feeling it. Here’s how I see it. The Assumptions People are heterogenous. Peoples’ beliefs are heterogenous. Peoples’ willingness to believe are heterogenous. Peoples’ inventiveness and imagination are heterogenous. Peoples’ willingness to tell or repeat stories are heterogenous. Peoples’ susceptibility to stories, and to storytellers, are heterogenous. Peoples’ need to belong are heterogenous. People form networks because they need to belong. Information (Gossip, facts, stories) is transmitted along those networks. These variables (information,[…]

Suppose the following scenario: Series A or B; A data science firm (narrow machine intelligence, applied machine intelligence, general machine intelligence, predictive or prescriptive analytics, software or hardware); Technical CEO / Co-Founder; Chief Marketing Officer (CMO) just hired; What might the CEO-CMO relationship look like? The relationship could be great. If there’s one stereotype about data science CEO’s, it’s that they like incentives to be aligned. The CMO would likely be brought on to focus on growth. If revenue grows, valuation grows, and collective comp would grow. There might be points of friction. From the CMO’s Perspective: Why is the CEO constantly at me about metrics all the time? Why is the CEO always on about non-working dollars? (Why don’t[…]

What do you think causes the demand curve? Mechanically, it’s pretty easy to describe the laws of demand. The way pretty lines shift to the right or the left from shocks. It’s possible to deduce the real, rough, shape of the demand curve for a product (It just takes a lot of courage!). We can import all the knowledge about demand, segmentation and price discrimination. We can describe a demand curve just fine. Why does it exist? What causes it to exist? If intelligence didn’t exist, demand wouldn’t exist. It’s fun to think of a machine generating it’s own preferences, independent any human input. Most of human trainers of such machines seem to keep them on a short leash. Monkeys,[…]

It seems like a lot of people value certainty. People buy a lot of products and stories for certainty. Insurance. Investment advice. Forecasts. Indulgences.Many entrepreneurs, in particular those in data science, sell certainty. What else is an F1 score other than a measure of certainty on some level? Given some inputs, our machine transforms them some way, which produces some statement about the past, present, or future, with some quantifiable amount of certainty, so that you can do something with confidence (or feel more secure). We sell certainty. And yet isn’t it curious about how much insecurity we’re creating while we do so? It has always been easier to sample data from the past, pull a heuristic from it, and[…]

Teams, in software engineering, form because of success. Without success, the firm wouldn’t be cursed with the problem of having so much talent to have to organize in some way. A founder can easily reduce the complexity in their human organization, and their lives, by simply not hiring any more than seven technologists to work with them on their mission. For some, this is viable. For others, this is not. Teams emerge in response to scale. They are either formed as by product of centralized hierarchical command structure, or they emerge as a product of network cohesion/polarization. To the extent that either formation is aligned with the vision, goal, mission, or purpose of the organizational chrome is a function of[…]

Imagine with me: what if novels were written like software. Sometimes it’s useful to approach absurdity and look inside. There might be treasure there. I’ll define software as an executable, a set of instructions, that are interpreted by a machine for some reason. As a data scientist, I think of software as a product, and I think, constantly, of turning data into product. I think of data as inertia and all the code around it as flexible. I worry a lot about the people that use the software (if anybody) and think of them as heterogenous segments. I think of a novel as an executable, a set of instructions, that are interpreted by a human brain for some reason. As[…]

This is a dense post. Feldman and March, in 1981, wrote “Information in Organizations as Signal and Symbol”. And it makes good predictions about what a management scientist type would say about the purpose of information in an organization. Indeed, just last month, I hyped Carl Anderson’s 2015 original position yet again, in the framing of information as assisting learning. Feldman and March are cited by another piece that’s been weighing heavily since February. Alvesson and Spicer’s 2012 hit “A Stupidity-Based Theory of Organizations” explains why seemingly intelligent people pretend to be dumber than they are. Please don’t misinterpret this passage. It’s not the case that everybody is stupid. Sometimes people act dumber because they have to go-along-to-get-along. Are you[…]

Who do you trust to manage your attention? Because now that the news cycle has surfaced Cambridge Analytica issue¬†– that’s the real thesis question. Let me explain. How the Newsfeed manages your attention I really can’t understate just how powerful amplified engagement really is. When you overlay the like/share verbs on top of a network of individuals who all have something in common, or who procure people who have something in common, you get some pretty strong effects. Don’t believe me? Just check out the clothing in your drawers and the items in your fridge. You, my friend, are an outcome of considerable social contagion effects. Facebook’s newsfeed algorithm shelters you from a power law distribution of content that the[…]

There’s a quote from The Office (US) [Season 6, episodes 5/6, “Launch Party”]: Michael: Okay, okay, what’s better? A medium amount of good pizza? Or all you can eat of pretty good pizza? All: Medium amount of good pizza. Kevin: Oh no, it’s bad. It’s real bad. It’s like eating a hot circle of garbage. The launch in that episode was the ill fated “Dunder Mifflin Infinity”, and while the reference in the passage is to the pizza that Michael Scott had ordered, it may as well been referring to the website. For many reasons, people tend to build all you can eat hot circles of garbage, instead of a medium amount of pretty good pizza. Minimum Viable Product and[…]