Teams, in software engineering, form because of success. Without success, the firm wouldn’t be cursed with the problem of having so much talent to have to organize in some way. A founder can easily reduce the complexity in their human organization, and their lives, by simply not hiring any more than seven technologists to work with them on their mission. For some, this is viable. For others, this is not. Teams emerge in response to scale. They are either formed as by product of centralized hierarchical command structure, or they emerge as a product of network cohesion/polarization. To the extent that either formation is aligned with the vision, goal, mission, or purpose of the organizational chrome is a function of[…]

Imagine with me: what if novels were written like software. Sometimes it’s useful to approach absurdity and look inside. There might be treasure there. I’ll define software as an executable, a set of instructions, that are interpreted by a machine for some reason. As a data scientist, I think of software as a product, and I think, constantly, of turning data into product. I think of data as inertia and all the code around it as flexible. I worry a lot about the people that use the software (if anybody) and think of them as heterogenous segments. I think of a novel as an executable, a set of instructions, that are interpreted by a human brain for some reason. As[…]

This is a dense post. Feldman and March, in 1981, wrote “Information in Organizations as Signal and Symbol”. And it makes good predictions about what a management scientist type would say about the purpose of information in an organization. Indeed, just last month, I hyped Carl Anderson’s 2015 original position yet again, in the framing of information as assisting learning. Feldman and March are cited by another piece that’s been weighing heavily since February. Alvesson and Spicer’s 2012 hit “A Stupidity-Based Theory of Organizations” explains why seemingly intelligent people pretend to be dumber than they are. Please don’t misinterpret this passage. It’s not the case that everybody is stupid. Sometimes people act dumber because they have to go-along-to-get-along. Are you[…]

This post describes a fast follow startup and the implication for how that startup learns. Define Startup A startup is a market hypothesis looking for validation. It’s an organization in search of a business. If they’ve accepted funding, then it’s a group of people looking for a liquidity event. Define Follow Follow means imitation. It means that an entrepreneur or a herd entrepreneurs have been observed pursuing a particular product-solution-market fit, or a hypothesis, and some founder wants to join the herd. Define Fast Fast means that the organization is imitating fast enough to nip at the heals of the lead innovator. It is imitating fast enough to be contention of overtaking the leader, or close enough to experience a[…]

Who do you trust to manage your attention? Because now that the news cycle has surfaced Cambridge Analytica issue¬†– that’s the real thesis question. Let me explain. How the Newsfeed manages your attention I really can’t understate just how powerful amplified engagement really is. When you overlay the like/share verbs on top of a network of individuals who all have something in common, or who procure people who have something in common, you get some pretty strong effects. Don’t believe me? Just check out the clothing in your drawers and the items in your fridge. You, my friend, are an outcome of considerable social contagion effects. Facebook’s newsfeed algorithm shelters you from a power law distribution of content that the[…]

There’s a quote from The Office (US) [Season 6, episodes 5/6, “Launch Party”]: Michael: Okay, okay, what’s better? A medium amount of good pizza? Or all you can eat of pretty good pizza? All: Medium amount of good pizza. Kevin: Oh no, it’s bad. It’s real bad. It’s like eating a hot circle of garbage. The launch in that episode was the ill fated “Dunder Mifflin Infinity”, and while the reference in the passage is to the pizza that Michael Scott had ordered, it may as well been referring to the website. For many reasons, people tend to build all you can eat hot circles of garbage, instead of a medium amount of pretty good pizza. Minimum Viable Product and[…]

Do you like new technology? Chances are that if you’re reading this space, you do. I like new technology too. I don’t like hype as much. I get suspicious when people go out of their way to inflate expectations deliberately in advance of a promise that they know, full well, it can’t deliver. Whether you’re buying for yourself, your home, or your organization, you want to invest in technology that’s likely to have a return, but not such a diminished return that you derive absolutely no competitive advantage or learning from it. There’s a balance there between the fear of losing too much and the greed of unfair advantage. To understand why these feeling develop, it helps to understand why[…]

You may have been to a conference. Ever wonder why they’re the way they are? The Conference Market(s) Different people hire a conference to do different jobs. For some, a conference is a chance to learn, be exposed to new ideas, and exit a comfort zone. Or, to enter a comfort zone to be exposed to new ideas and feel safe enough to learn. For some, it’s entirely about networking with colleagues, or recruiting, or to be recruited. For others, a conference is a chance to spam people with signing authority with their marketing messages. Or to upsell. Or to crossell. Or to retain. For others still, a conference is a reason to visit a city. To get the hell[…]

It was a treat to see these three – Yoshua Bengio, Yann Lecun, and Geoffrey Hinton – for an afternoon. Easily the best three consecutive hours I’ve ever seen at a conference. They remarked that Canada continues to invest in primary research. And this is a strength. Much of the exploratory work these three executed in the 80’s, 90’s and naughties was foundational to industrial applications which came after. Much of reinforcement and deep learning has moved on into industrial application. For the three grandfathers of deep learning, all of these algorithms and methods move into the realm of solved problems. For those of us in industry, there remains a lot of work to realize the benefits of deep learning.[…]

The other I likened the process for taking apart a Job To Be Done to taking a part a lobster. There’s a very effective way to decompose any problem with enough energy. And then I watched The Founder on Netflix and admired the McDonald brothers using a classic technique in management science to refine a system on a tennis court. And I loved it. They really refined hamburger and frenched fry delivery. And then this morning I read that Andrew Ng in working on a new coursera course for AI. And I’m thankful for his initiative and optimism. Out of those three threads, this one post. The Assembly Line The assembly line was an American invention for Americans. It could[…]