Is what is happening in analytics, in industry, an evolution or a revolution? What is Analytics is the science of data analysis. Those who practice analytics self-identify as analyst, digital analyst, marketing scientist, data engineer, researcher, among many others. Tukey (1962, The Future of Data Analysis, The Annals of Mathematical Statistics, (33), 1) called them all practitioners. The goal of the practitioner depends on their context. That context largely, but not always, depends on the state of knowledge, state of the culture, or sometimes, normatively, the state of maturity, of the group they belong to. Large organizations can have a large amount of difference within them. It’s not uncommon for an operations department to be extremely mature and for its[…]

In this post, I’ll outline some of the best parts about product managing data science. Data science is the creation of product from data, requiring a blend of the skills of technology, statistics, and business. Product Management brings and keeps product in the world, requiring a blend of the skills of technology, user experience, and business. All of the challenges of product management appear in data science. And then some. The Knowledge Funnel The Knowledge Funnel is a concept introduced by Roger Martin in Design of Business: Why Design Thinking is the Next Competitive Advantage (2009). At the top of the funnel, you got mysteries. It would seem that there are an uncountable number of mysteries. In the middle, you have heuristics,[…]

Upon reflecting on 2019 and the decade that was, I’ll ask, perhaps more competition is needed? There is no Call To Action, nor a verdict. It’s an open ended question. On one hand, competition is amazing for the consumer in the short and long runs, and fantastic for innovation in the medium to long run. When companies compete, you win. And they invest in R&D. On the other hand, competition inhibits the ability of a small set of firms to corner and extract the maximum amount of rent. A lack of competition is fantastic for the shareholders in the short run, and absolutely terrible for consumers and society in the medium and long run. On balance, I believe that competition[…]

The main point is that it’s worth trying to predict technology triggers and asking what those triggers mean. There is value in answering the question so what? A secondary argument is that questions beginning with what if? can be very interesting, but far less reliable than so what? What is a Technology Trigger? The term Technology Trigger is from Gartner’s Hype Cycle. They defined it as: A potential technology breakthrough kicks things off. Early proof-of-concept stories and media interest trigger significant publicity. Often no usable products exist and commercial viability is unproven. Gartner Research The term has been deprecated in favour of the term innovation trigger. However, as an owner of the hardcover book Managing The Hype Cycle (2008), I[…]

There are at least two systems of achieving productivity growth: path dependence and disruption. What if there is a third way? This post unpacks that paragraph and explores ways through. It will start with explaining lock in and path dependence. We’ll cover the application narrow machine intelligence in a very narrow industry. It will end with a small scenario and a few what ifs. Lock In Consider banner advertising. This is a relatively old industry. Its roots predate the Internet by at least a couple hundred years. It may have started thousands of years ago. It starts out with a person with a problem. They need to get the word out about their product or service. Reframed, they need to[…]

Torben Iversen and Anne Wren wrote (1998) “Equality, Employment, and Budgetary Restraint: The Trilemma of the Service Economy” and published it in World Politics, (50), 4, pp. 507-546. And it’s a good read. And you could read it for yourself right here. Here’s a summary in one image: What It Means What causes the Trilemma itself? It’s the idea that productivity doesn’t really grow in a pure local services economy. A restaurant can only serve so many meals, barber cut so many heads, a teacher so many students, a surgeon so many people, a police officer so many arrests. It’s far harder to get compounded year on year growth in productivity in services. As I’ll argue below, it isn’t impossible.[…]

What if code is an artifact of the culture that creates it? What would your interpretation of the code suggest to you about the culture? What would different layers of code tell you about how people lived in the past? Culture Code is instructions to be run by machines and interpreted by the humans that take care of it. So much code is managed by people. And groups of people get to together and create language, standards, rituals, traditions, meanings, arguments, rhetoric, procedures, regulations, obligations, agreements, memoranda of understanding, specifications, memes, stories, and values. Cultures evolve. For instance, as a startup goes from 2 people to 5, then 5 to 11, (11 to 23, 23 to 47, and so on)[…]

The inspiration for this post is John Cutler‘s excellent twitter thread on prioritization. It’s well worth the read. This post builds on that inspiration using Roger Martin’s concept of the The Knowledge Funnel. One big takeaway of John Cutler’s thread is when deciding the sequence of what to do in product management, consider the big picture and think of the impact of what you will do next on what you will know next. What I like about Roger Martin’s concept on knowledge funnels: consider the big picture and think of what you know about value. Product management and data science is all about managing the knowledge funnel. Your ability to manage this funnel is predictive your ability, and those you[…]

There are many calls to break up tech. Break up what, exactly? Regulate tech? Regulate what? There’s a lot of polarization about what to do about Facebook, Amazon, Apple, and Google. That polarization is in part driven by anger. Dig a bit deeper and see fear. Maybe you’re feeling it. Here’s how I see it. The Assumptions People are heterogenous. Peoples’ beliefs are heterogenous. Peoples’ willingness to believe are heterogenous. Peoples’ inventiveness and imagination are heterogenous. Peoples’ willingness to tell or repeat stories are heterogenous. Peoples’ susceptibility to stories, and to storytellers, are heterogenous. Peoples’ need to belong are heterogenous. People form networks because they need to belong. Information (Gossip, facts, stories) is transmitted along those networks. These variables (information,[…]

Suppose the following scenario: Series A or B; A data science firm (narrow machine intelligence, applied machine intelligence, general machine intelligence, predictive or prescriptive analytics, software or hardware); Technical CEO / Co-Founder; Chief Marketing Officer (CMO) just hired; What might the CEO-CMO relationship look like? The relationship could be great. If there’s one stereotype about data science CEO’s, it’s that they like incentives to be aligned. The CMO would likely be brought on to focus on growth. If revenue grows, valuation grows, and collective comp would grow. There might be points of friction. From the CMO’s Perspective: Why is the CEO constantly at me about metrics all the time? Why is the CEO always on about non-working dollars? (Why don’t[…]