This is a dense post. Feldman and March, in 1981, wrote “Information in Organizations as Signal and Symbol”. And it makes good predictions about what a management scientist type would say about the purpose of information in an organization. Indeed, just last month, I hyped Carl Anderson’s 2015 original position yet again, in the framing of information as assisting learning. Feldman and March are cited by another piece that’s been weighing heavily since February. Alvesson and Spicer’s 2012 hit “A Stupidity-Based Theory of Organizations” explains why seemingly intelligent people pretend to be dumber than they are. Please don’t misinterpret this passage. It’s not the case that everybody is stupid. Sometimes people act dumber because they have to go-along-to-get-along. Are you[…]

This post describes a fast follow startup and the implication for how that startup learns. Define Startup A startup is a market hypothesis looking for validation. It’s an organization in search of a business. If they’ve accepted funding, then it’s a group of people looking for a liquidity event. Define Follow Follow means imitation. It means that an entrepreneur or a herd entrepreneurs have been observed pursuing a particular product-solution-market fit, or a hypothesis, and some founder wants to join the herd. Define Fast Fast means that the organization is imitating fast enough to nip at the heals of the lead innovator. It is imitating fast enough to be contention of overtaking the leader, or close enough to experience a[…]

It’s easier to link to this text than it is to repeat the intuition every time. Those who learn fastest win One of the core reasons why, as I write this in mid-2018, Silicon Civilization has the world in their teeth is because they figured out that it wasn’t just about learning. It was about learning quickly. Look at it from their perspective. A startup is a hypothesis looking for validation. Those startups that are able to learn fastest have a greatest chance of pulling up before the runway runs out. Those that learned survived takeoff. Those that really thrived never stopped learning. They win because they got really good at learning. It isn’t purely about data, it’s about how[…]

We visited Koh Tao from March 18 to April 1, 2018. Here are some notes for fellow Canadians thinking about visiting Koh Tao. Getting There: The Flights A wise graduate supervisor once advised that one should always break up my trip so that you’re spending no more than 8 hours a day traveling. Eight hours in an airplane is a good work day, and you want to show up refreshed and ready to go. We didn’t do that. For the first leg, we did Cathay Pacific 829, Toronto to Hong Kong. Flight time was 15h30 minutes. It departs Pearson at 0h130 and lands the next day at 05h00. The way this flight works is impressive. There are stands to manage[…]

We visited Buenos Aires from Feb 9 to March 1, 2018. Here are some notes for fellow Canadians thinking about visiting Buenos Aires. Taking a vacation in Buenos Aires as a Canadian requires some planning. If you do not enjoy planning, don’t go just yet. If the trend holds through to 2020, it’ll become easier and easier to visit. These notes are for Canadians. Getting There: The Flight We did Air Canada 92, which flies to Buenos Aires via Santiago, Chile. The flight was late because of mechanical issues prior to its Morning run to Beijing, via Vancouver. Delays are the rule, not the exception, with AC 92. Check out FlightAware to verify for yourself. It has a terrible on[…]

Do you like new technology? Chances are that if you’re reading this space, you do. I like new technology too. I don’t like hype as much. I get suspicious when people go out of their way to inflate expectations deliberately in advance of a promise that they know, full well, it can’t deliver. Whether you’re buying for yourself, your home, or your organization, you want to invest in technology that’s likely to have a return, but not such a diminished return that you derive absolutely no competitive advantage or learning from it. There’s a balance there between the fear of losing too much and the greed of unfair advantage. To understand why these feeling develop, it helps to understand why[…]

Backcasting is a fantastic technique. It was invented in Canada. You’re welcome to use it. If it sounds like forecasting – well – that’s because it’s kind of like forecasting. With an important difference. That wikipedia page says: Whereas forecasting is predicting the future (unknown) values of the dependent variables based on known values of the independent variable, backcasting can be considered the prediction of the unknown values of the independent variables that might have existed to explain the known values of the dependent variable. I had to re-read it a few times to really get it. Once you get it, it’s just elegant. What’s beautiful is that it can silence the reactive-pure-statistician brain long enough for the prospective centre of the creative brain to imagine several futures. What I like about backcasting[…]

Jon Evans wrote a piece for Techcrunch entitled: After the end of the startup era. In it, Evans writes: We live in a new world now, and it favors the big, not the small. The pendulum has already begun to swing back. Big businesses and executives, rather than startups and entrepreneurs, will own the next decade; today’s graduates are much more likely to work for Mark Zuckerberg than follow in his footsteps. And, Because we’ve all lived through back-to-back massive worldwide hardware revolutions — the growth of the Internet, and the adoption of smartphones — we erroneously assume another one is around the corner, and once again, a few kids in a garage can write a little software to take[…]

Earlier in the month, I dined under the space shuttle Endeavour with some of the best minds in marketing science. One mind remarked: “That’s why I bring a glossary with me, oh, you want to do supervised learning? Oh you mean regression? Oh, okay, now we can talk… We’ve been talking to managers about these methods for decades, but it’s just suddenly sexy because it’s all machine learning and deep learning and reinforcement learning.” A lot of the math that underlies much of machine intelligence and artificial intelligence is indeed remarketed marketing science. And, hipsterism aside, the annoyance is understandable. Marketing science started out a bit of a revolt against the Mad Men. Some of the early stories feature post-war[…]

Bart Gajderowicz delivered a great talk at Machine Intelligence Toronto about how people go through stages in accomplishing a goal [1]. The talk was about homelessness and AI approaches to public policy. I instantly saw a connection to all sorts of tensions that people endure when they set out on a goal. To distill the concept, let’s start off with the idea that people have goals, people have emotions, and that time moves forward. As people make progress towards their goals, their emotions change over time. They start off in a good mood, in a state of uninformed optimism. Then, as negative information overwhelms their ignorance, they enter into a state of informed pessimism. So much negative information builds up[…]